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NOMENCLATURE 

c, = C(B, I T, - T, I + P, I& - c, 1)s/4v21? 

; 
species concentration ; 
= FPr3’4 ; 

& 

= $x_3”(4vc)_‘; 

Lewis no., = at/a, ; 
Pr, Prandtl no., = v/a,; 
SC, Schmidt no., = v/a,; 
T, temperature; 
u, 0, velocity components ; 
GY, Cartesian coordinates. 

Greek symbols 

diffusivity (thermal, species); 
expansion coefficient (thermal, species); 
relative buoyancy = ) /I,ATlp,AC 1 ; 
similarity variable = QPr’@; 

= (T- T,)/Vw,,, - T,); 
viscosity ; 
similarity variable = cyx-tj4; 
= (C - C, )/(CW,,, - C,); 
stream function. 

INTRODUCTION 

IN DOUBLE-diffusive (or more Specifically, thermosolutal) 
natural convection, the driving density gradients result both 
from temperature gradients and from concentration gradi- 
ents of one or more chemical species. The associated 
problem of heat, mass, momentum and species transport has 
been studied in several classical applications [l] and is of 
current interest in convective stratification of magma cham- 
bers and solution mining of salt cavities for crude oil storage, 
Often, the Rayleigh number is sufficiently large that a double- 
diffusive boundary layer flow develops on internal or external 
surfaces, and this boundary layer will remain laminar for at 
least some length of the run. 

The present analytical and numerical study reveals that a 
double-diffusive counterbuoyant boundary layer may pos- 
sess the classical self-similar structure first investigated by 
Gebhart and Pera [2] only within two distinct and discon- 
nected subdomains of the physical parameter space. In the 
outer-dominated subdomain, it is the more diffusive (and 
hence, outermost) of the buoyancy mechanisms which con- 
trols the primary direction of flow and the direction of 
boundary layer growth, and the converse is true for inner- 
dominated flows. Between the inner-dominated and outer- 
dominated domains there lies a still-unexplored domain of 
non-similar flows. Along the similar-non-similar borders 
there are marginal zones of non-uniqueness in which a 
multiplicity of self-similar solutions may exist, The self- 
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similar sub-domains are investigated by several numerical 
methods (shooting, finite differences and Picard’s method) 
and by the method of matched asymptotic expansions (at 
high Prandtl number and/or high Lewis number) in order to 
demonstrate the above-outlined qualitative features and to 
map out the borderlines of incipient counterflow. More 
complete discussion and results are available in [3]. 

ANALYSIS 

The following form of the boundary layer equations 
expresses the conservation of mass, momentum, energy, and 
chemical species for a binary fluid/solute flow along an 
impermeable vertical wall [2] 

au au 
-+-_=O 
ax ay 

aT dT d2T 

u-+"-==a,F ax ay 

ac ac a*c 
u-+v--ma,. 

dx ay ay 

By the introduction of dimensionless variables defined in 
the Nomenclature, the conservation equations are reduced to 
the following system of ordinary differential equations in 
which primes are derivatives with respect to the similarity 
variablerandr=B,IT,-T,I/B,IC,-C,I 

tY+3PrFB’=O 

v+3ScF$‘=O 

(2) 

subject to the boundary conditions 

t?(O) = $(O) = 1; F'(0) = F(0) = 0 

B(r.)=~#~(x)=o; F(x)=O. 
(3) 

Since the roles of tl and 4 are entirely interchangeable; we 
need only consider the case of Le = ScJPr > 1. 

Three different transverse length-scales, or boundary layer 
thicknesses, are generally present : the concentration layer 6,. 
the thermal layer a,, and the viscous layer 6,. The ordering is 
6, < 6, and 6, < 6, in the considered cases where Le = a,/a, 
> 1 and Pr=vja,> 1. 

(1) Outer-dominated flows occur when F is sufficiently 
large that the outer (here thermal with Le > 1) buoyancy 
force is dominant, and then the upper signs are appropriate in 
equation (2). 

(2) Inner-dominated flows occur when F is sufficiently 
small that the inner (here solutal) buoyancy force is domi- 
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nant, and then the lower signs are appropriate in equation (2). 
The signs on the buoyancy forces must change, because the 
primary flow direction and the direction of boundary layer 
growth must both be taken as positive in the direction of the 
dominant buoyancy force. 

For a large Prandtl number, both 6, and 6, cc 6,, and in the 
near field buoyancy forces are in balance with shear forces. As 
explained by Kuiken’s [4] matched asymptotic analysis, the 
differential equations reduce to the following near-field form 
in the limit as Pr + x (here, primes represent d/dq; see 
Nomenclature for f and q) : 

B”+3fB’=0 (4) 

@+3l.ef@=O 

subject to the previously noted conditions at the wall (3a) as 
well as the near/far matching conditions 

tl --t 0, 4 I* 0, f” --* 0; as ? -+ x (5) 

which reflect the facts that the temperature (and, here also the 
concentration) have already fallen to the far-field value and 
that thef’ is at a maximum (or a saddle point) at the outer 
edge of the near-field. Note that the near-field solution can be 
determined by solving (3a), (4) and (5) independently of the 
far-field. 

The system of equations, either (2) or (4). is solved 
numerically using three different methods; shooting, finite 
differences, and Picard’s method. In certain adverse circum- 
stances, one method may perform better than the others; and 
the variety of approaches affords useful cross-checking to 
ensure that spurious numerical artifacts are not mistaken for 
physical phenomena. The shooting method provides the 
highest degree of accuracy, but it requires a very good initial 
guess to ensure convergence. It was implemented by library 
Runge-Kutta and root-finder routines, and it was often used 
to improve upon the solutions generated by the other 
methods. Picard’s method of successive integrations [3], as 
implemented by Simpson-like quadratic integration, was 
found to be stable and reliable; and it was used primarily to 
generate the solutions to (4) for Pr --t r-. The tinite difference 
method is implemented using: the variable grid Znd-order 
differencing procedure devised by Blottner [5], Newton- 
Raphson iteration of the non-linear product terms, and 
Blottnefs inversion procedures for tri-diagonal and block- 
diagonal systems. 

A key issue in the successful execution of the iterative 
methods (FD and Picard) is the proper selection of the 
parameter which is held constant during the interation cycles. 
Rather than fixing the relative buoyancy, P (for given Pr and 
Lea), it is often advantageous to fix the shear stressf”(0) or, in 
some high Pr cases, the velocityf’( 7,) at the outer edge of the 
near-field. To maintain a fixed value of r(O), it is only 
necessary to iteratively readjust r in accordance with the 
following integral equation [e.g. for the high Pr case from 
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based upon a prescribed value off”(O) and most recent values 
of 8 and #. An analogous integral equation is used for the 
finite Pr case, and likewise for maintaining a prescribedf’( x). 
This utilization of an alternative parameterization of the 
solution family is obviously necessary when multiple sol- 
utions arise; and it may also be advantageous when other, 
more subtle, convergence problems are encountered. 

ILL~JSTRAT~VE RESULTS 

As an illustrative family of solutions consider the ease of 

Le = 4 and Pr + X. (hence, equations 3a, 4.5) for all values of 
the relative buoyancy P = 1 fl,AT/&,AC 1. For P -+ y1,, the 
flow is exactly the same as single-diffusive thermal convection 
[4]. As I- is decreased, the counterbuoyant effect due to the 
solute concentration becomes progressively stronger, partic- 
ularly in the wall region ( y < 6,) where the counterbuoyant 
force is active, as apparent in the velocity profiles given in Fig. 
1. The shear stress vanishes at the wall for I* = 0.63, and as 
seen in Figs. 1 and 2 there is back-flow in the wall region when 
l”‘is slightly less than thisvalue. There is a minimum vatue of r‘ 
for which outer-domjnated self-similar solutions can exist, 
and there are multiple solutions in that neighbourhood. On 
the unexpected lower branch of the outer-dominated sol- 
utions which can be reached by specifying the shear stress 
rather than I-, the inner counterbuoyant force exercises more 
influence (and hence there is more back-flow) than is observed 
for the upper-branch Rows with identically the same counter- 
buoyancy ratio, I-. 

Innerdominated flows occur for small values of f, since 
the inner solutal buoyancy is then dominant. For P + 0 the 
flow is identically the same as single-diffusive solutal con- 
vection. As I- is increased, the counterbuoyant effect of the 
thermal gradient becomes progressively stronger, particularly 
in the outer region (y < 6,) where only the counterbuoyant 
thermal force is active, as seen in the velocity profiles of Fig. 3. 
The velocity, f’, tends toward negative values in the outer 
region when f becomes sufficiently large, and a loop-like 
multiplicity of solutions is found to exist in the neigh- 
bourhood of incipient back-flow (see Figs. 2 and 3) just as in 
the outer-dominated Aows. Also, as before, there is an 
extremal value of f’ (here a max r) for which inner-dominated 
Row may exist. 

The qualitative results are essentially the same for other Pr 
and Le,except for the following distinction. When Pr is finite, 
it is possible to have inner-dominated solutions with weak 
backflow in the far field. But, as Pr -t X, it is impossible, 
within the context of self-similar theory. for an inner- 
dominated back-flow to occur. The supportive argument 
given in [3] is based on the observations thatf’l x )cannot be 
negative, and thatf’cannot pass through negative values and 
then return to zero as q -+ X. 

The limits of incipient counterflow are displayed in Fig. 4 
for Pr = 1, 10, x and for 1 < Le < 10’. For any Pr, r must 
either lie above the upper back-flow line or below the lower 
back-flow line in order for unidirectional solutions to exist. As 
Le -t 1, the problem degenerates into the mathematical 
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FIG. 1. Outer-dominated flows for Pr -) x and Le = 4, for 
various values of the relative buoyancy f, illustrating multi- 

plicity of solutions for T’ = 0.75 and 1.0. 
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RELATIVE BUOYANCY, I- 

FE 2. Wall shear vs relative buoyancy illustrates non- 
uniqueness and limits of existence for Pr + x. and Le = 4. 

equivalent of a single-diffusive flow; and unidirectional 
solutions exist for all r, except when I- = 1 and there is no 
motion at all. The asymptotic behavior of the incipient 
counterflows, (in the limit as Pr + Y,, Le + r_)is described in 
[3] by a three-layer model (inner/near, outer/near, and far) 
which divides Kuiken’s near field into two regions, an 
inner/near zone which spans 6, and an outer/near zone which 
spans a,, while retaining Kuiken’s far-field scaling. For the 
inner/near zone, the scalingf* = IL&“ and ‘I* = ~jLe’,~ 
removes all parameters from the equations. 

(1) For the outer-dominated flows there is a region of 
constant and non-zero shear which joins the inner/near and 
outer/near zones, and hence the appropriate outer/near 
scaling must bef = fle’ ‘I2 and rj = q/Le’i12 in order that the 
matching conditions can take the physically expected shear- 
matching form and also that the outer/near equations 
become dependent upon only one parameter, TLe’,‘. From 
the numerical computation, we find that FLe”3 = 1.08 at 
incipient counterllow [i.e. whenf”(0) = 01. 

(2) For inner-dominated flows the velocity rises rapidly to 
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FIG. 4. Limits of incipient counterllow for various Pr. 

a maximum within 6, and then falls otTslowly within a,, which 
suggests that the outer/near scaling must bef = fLe”4 and 
$ = q/Le”4 in order that the matching conditions can take 
physically expected velocity-matching form and also that the 
outer/near equations become dependent upon only one 
parameter, TLe. From the numerical computation we find 
that TLe = 0.545 at incipient counterllow (i.e. whenf’( X) = 
0). 

Incipient countertlow does not occur when the overall 
buoyancy forces are in balance (i.e. when l-6,/6, - TLe”’ - 
1) as one might expect. Instead, there is a somewhat more 
complex interaction between buoyancy and shear forces; and 
this interaction is qualitatively different in the distinct cases of 
inner-dominated and outer-dominated flows. 

SUMMARY 

The flow regime map of Fig. 4 (and the asymptotic analysis) 
divides the parameter space into regions of: outer-dominated 
unidirectional flow, inner-dominated unidirectional flow, 
and counterflow. It has been found that the classical self- 
similar theory is not applicable in the central region of the 
parameter space where the strongly reversed counterflows 
are expected to occur, perhaps because the forward flow and 
reverse flow regions of the boundary layer may each tend to 
grow thicker in their respective directions of flow. 

The observed multiplicity of solutions is instructive from a 
mathematical/numerical viewpoint, and it serves to identify 
the boundaries of the self-similar domain ; such knowledge is 
useful even though stability considerations may preclude the 
physical occurrence of multiple solutions. 
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FIG. 3. Inner-dominated flows for Pr + x and Le = 4, for 
various values of the relative buoyancy r. 
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